

KG Powered Digital Twins

Digital Twin Conference Feb, 2024

Ontotext: Visionary Leader with Great Technology

Innovator & Leader

- ✓ Semantic technology pioneer est. year 2000
- ✓ The developer of GraphDBTM
- ✓ Center of an ecosystem of 60+ partners
- ✓ Member of W3C, ODI, STI, EDMC, LDBC, ...

$\,\circ\,$ Profitable and growing product company

- ✓ ARR growth 45%, EBITDA 37%, over 80% product revenues
- ✓ Global: 80% of revenue from multinational companies

Agenda

The Promise of KG
The Fulfillment
The Materialization

Value Proposition of Knowledge Graph

Semantic Standards (Essential Building Blocks)

Foundational Capabilities

Value Drivers (why)

IDENTITY (IRI/URL)

ONTOLOGIES (Precise Meaning)

EXPRESSION (RDF, SKOS, OWL)

BUSINESS RULES (SHACL, SBVR)

QUALITY (mathematical validation)

CONCEPT REUSE (shared meaning)

CONTEXT (identity + meaning + time + source)

ENTITLEMENT (datapoint access control)

LINEAGE (technical and business)

GOVERNANCE (simplified and embedded)

EXECUTION (machine-readable)

CONTINUOUS TESTING (rules-based)

Cost Savings (automation, operational resiliency)

Control Environment (compliance, simplification of governance, reporting)

Capability Enhancement (flexibility, data science, data quality)

Business Goals (customer service, product innovation, customer 360)

Use Cases (what)

Data Integration (lock down meaning, resolve identity)

Connected Inventory (digitization, system interoperability, supply chain)

Access Control (privacy, cyber security, entitlements)

Data Discovery (enterprise search, ad hoc query, risk management)

Knowledge Representation and Meaning Unification

Search	Marketing Resources Chat Analytics
Enter search term here	Ask Ontotext Chat 1
Filters	All Question: *
> Resource Type	Using knowledge graphs for domain knowledge representation and meaning unification for digital twins • ©
> Industry	«
> Topic	
> Product	Knowledge graphs serve as a powerful tool for representing domain knowledge and unifying meaning, particularly in the context of digital twins. By leveraging semantic modeling techniques such as ontologies and controlled vocabularies, knowledge graphs ensure consistent representation of data,
> Application Area	regardless of its original format or source. This unified approach provides a common framework for understanding and working with data, which is crucial for digital twins that require a holistic view of all information and on understanding of the relationships between different rises of data (read more)
> Audience	Additionally, knowledge graphs can enhance proprietary information by integrating external knowledge sources, providing a richer context for interpretation, which is beneficial for the complex systems that
 Capability 	digital twins often represent (read more).
> Publication Date	Explore further the following main topics:
> Author	How do knowledge graphs contribute to better decision-making and analytics in organizations?

What are some of the industry verticals where knowledge graph applications have been successfully implemented?

Data Integration Requirements

Structured/Reference Data

- Entities
- Farm and Field
- Property Boundaries
- Land Ownership
- Geographic and Geometric Data
- Legal Information

Time-series

- Historical Soil Moisture
- Historical Precipitation
- Forecasted Precipitation

Knowledge Organization

- Soil Properties and Processes Ontology
- OWL Time Ontology
- OWL GeoSPARQL
- Kinship Ontology
- SWEET Earth and Environment Ontology
- Financial Industry Business Ontology

Signals from Unstructured content

• TBD

When should each farm field be irrigated to maintain best crop production?

- Entities: owners, customers, companies
- Farm and Field Data: Information about the specific locations of each farm field and their respective sizes and shapes.
- Property Boundaries: Detailed boundaries of each farm field to ensure precise irrigation within the property lines.
- Geographic and Geometric Data: GIS data regarding topography and shape of the land
- Legal Information: Water rights, usage restrictions, and any legal obligations or constraints regarding irrigation.

- Soil Properties and Processes Ontology: Soil type, texture, structure, and porosity
- **OWL Time Ontology:** time-related data, such as planting and harvesting seasons, to align irrigation schedules with critical growth periods of crops.
- OWL GeoSPARQL: leverage spatial queries and manipulate geographic information
- SWEET Earth and Environment Ontology: Environmental conditions that affect crop growth and irrigation needs
- Historical Soil Moisture: Previous soil moisture levels can establish patterns and inform the current moisture status of the soil.
- Historical and ForecastedPrecipitation: Historical weather patterns help predict future needs and schedule irrigation to complement natural rainfall.

Data Virtualization

Create a single representation of data from multiple, disparate sources without having to copy or move the data

- Abstract different physical model
- Aggregate heterogeneous sources
- Provide a single point of access

Common scenarios:

- Access data not available in a single system
- Prototype a BI application
- Data that can't be copied due to security

Historical/Forecasted Precipitation at a Location

Volume and Velocity

Simple schema no semantics Ο

< prices.csv (49.27 MB)					3		
Detail Compact Column 7					~		
About this file Historical prices							
🗂 date 🗧	≜ symbol =	# open =	# close =	# low =	#		
AJan10 30Dec16	501 unique values	0.85 1.58k	0.86 1.58k	0.83 1.55k	0.		
2010-01-04	AAPL	213.429998	214.009998	212.380001	21		
2010-01-05	AAPL	214.599998	214.379993	213.249994	21		
2010-01-06	AAPL	214.379993	210.969995	210.750004	21		
2010-01-07	AAPL	211.75	210.58	209.050005	21		
2010-01-08	AAPL	210.299994	211.980005	209.060005	21		
2010-01-11	AAPL	212.799997	210.110003	208.450005	21		
2010-01-12	AAPL	209.189995	207.720001	206.419998	26		
2010-01-13	AAPL	207.870005	210.650002	204.099998	21		
2010-01-14	AAPL	210.110003	209.43	209.020004	21		
2010-01-15	AAPL	210.929995	205.93	205.869999	21		

Public and alternative data • Complex graph with semantics

Who is likely to inherit the farm?

mouse and keyboard actions

JPMC – Resilient Infrastructure

UBS IT Asset Management

Decentralized Data Services

WBS

Highlights

- Holistic view of IT assets
- Powerful analytics
- Support UBS and CS merger

Predictable Management of Diverse Data

Big Graphs & Metadata

- ✓ 10B statements of master data
- ✓ 1B entities and concepts
- ✓ Entity linking across 5+ data sources
- ✓ 10M documents, 100 KG tags/doc.

Query Performance

- ✓ 10 transactional updates/sec on master data
- ✓ 500 updates/sec for documents and metadata
- ✓ 100 graph queries/sec/node, incl. inferred facts
- ✓ RDFS+ reasoning: instant and transparent
- ✓ 1000 full-text searches/sec across docs and data

Text & Graph Analytics

- ✓ Extract new entities and facts from text
- ✓ Retrieval of similar documents and entities
- ✓ Automatic classification and link prediction
- ✓ Relevance and importance ranking

Operations & Data Quality

- ✓ Multi-DC deployment across continents
- ✓ Commodity workers: 16 vCPU, 32GB RAM
- ✓ Daily updates from external data sources
- ✓ Maintain quality of linking and text analysis
- Metadata and instance data curation

SMOOTH DATA INTEGRATION

Thank you!

Understand

Schema

answer_question(df, question="What are the classes from the ontology?", debug=False)

'c4:Entity, c4:Agent, c4:Class, c4:Context, c4:User, c4:MessageBus, c4:WebApplication, c4:SystemElement, s

answer_question(df, question="What are the properties from the ontology?", debug=False)

'skos:example, skos:broaderTransitive, skos:definition, skos:hasTopConcept, skos:semanticRelation, skos:na

answer_question(df, question="How are c4:Context and c4:Container related?", debug=False)

'c4:Context is a subclass of c4:Entity, and c4:Container is a subclass of c4:SystemElement, which is a sub

answer_question(df, question="How are :RetailDatabase and c4:Container related?", debug=False)

':RetailDatabase is a subclass of c4:Container.'

Write

Queries

answer_question(df, question="Write SPARQL query to select all c4:Container", debug=False)

'SELECT ?container WHERE {\n ?container a c4:Container .\n}'

answer_question(df, question="Write SPARQL query to select all c4:Container", debug=False)

'SELECT ?container WHERE {\n ?container a c4:Container .\n}'

answer_question(df, question="Write SPARQL query to select all the dependencies of the Retail Order System",

'SELECT ?dependency WHERE {\n ?dependency c4:hasRelationshipWith :RetailOrderSystem .\n}'

answer_question(df, question="How the User interacts with the BackendAPI", debug=False)

'The User interacts with the BackendAPI through the Retail Order Mobile App.'

+ Code + Markdown

answer_question(df, question="How the User is related to the OrderService?", debug=False)

'The User interacts with the RetailOrderApp, which interacts with the BackendAPI, which contains the OrderServi

:stion="Enumerate all system elements which will be affected if the database is no longer available?", debug

the database is no longer available are :RetailDatabase, :BackendAPI, :OrderService, :ProductService, and :Ret

