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Abstract—As high resolution satellite imagery becomes in-
creasingly available in both the public and private domains,
a number of beneficial applications that leverage this data are
enabled. Extraction of building footprints in satellite imagery is
a core component of many downstream applications of satellite
imagery such as humanitarian assistance and disaster response.
This paper offers a comparative study of methods for building
footprint extraction in satellite imagery. The focus is to explore
state-of-the-art semantic segmentation models in computer vision
using the SpaceNet 2 Building Detection Dataset. Four high-level
approaches, and six total variants, are trained and evaluated
including U-Net, UNet++, Fully Convolutional Networks (FCN)
and DeepLabv3. The Intersection over Union (IoU) is used to
quantify the segmentation performance on a held out test set. In
our experiments, we found that DeepLabv3 with a Resnet-101
backbone is the most accurate approach to building footprint
extraction out of the surveyed methods. In general, models that
leverage pretraining achieve high accuracy and require minimal
training. Conversely, models that do not leverage pretraining are
inaccurate and require longer training regimes. In addition to
conducting novel experiments and offering a thorough analysis
of the results, this paper highlights future work that can be done
to extend this comparative study.

Index Terms—Semantic Segmantation, Building Extraction,
SpaceNet Dataset, U-Net, UNet++, DeepLabv3, Fully Convolu-
tional Networks

I. INTRODUCTION

Current approaches to extracting building footprints in
satellite imagery are primarily based on manual techniques.
Advancing automated building footprint localization will play
an important role in downstream uses of map data including
humanitarian and disaster response [1]. Recent progress in core
computer vision tasks, most notably semantic segmentation,
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present the opportunity to realize precise, automated building
footprint localization.

Semantic segmentation is a subclass of image segmentation
where pixels are grouped together based on their class [2].
It plays a critical role in a broad range of applications such
as autonomous driving (e.g. self-driving cars or autonomous
trains), geospatial analysis (e.g. building footprint extraction)
and medical image segmentation (e.g. biomedical marker
discovery). The goal of semantic segmentation is to label each
pixel of an image with a class, effectively partitioning the
pixels in the image into groups based on object type. Due to
the high dimensional nature of both the input and the output
space, semantic segmentation has traditionally been a very
challenging task in computer vision [2]. Fortunately, recent
supervised deep learning approaches have achieved robust
semantic segmentation performance on a variety of challeng-
ing benchmarks [3]. These approaches use large datasets of
images with corresponding pixel-wise labels to train neural
networks by iteratively updating the parameters of the model to
minimize a differentiable loss that characterizes the difference
between predictions and labels. At inference, new samples are
fed to the network and it produces a segmentation map with
the same spatial resolution as the input image that encodes the
label of each pixel.

This study seeks to explore cutting-edge semantic segmen-
tation methods for building footprint extraction in satellite
imagery. The Spacenet 2 Building Detection dataset [1] is
used as the benchmark dataset to evaluate the approaches.
The dataset contains over 10,000 high resolution satellite
images with corresponding ground truth labels. The task
involves segmenting building footprints from the background
area. Our main contribution is to offer a comparative study
of 4 different segmentation networks (i.e. U-Net, UNet++,



DeepLabv3 and FCN), and six total architecture variants, for
the task of building footprint localization. The study also
implicitly assesses the suitability of transfer learning for the
task of building footprint localization by featuring methods
that leverage pretraining in addition to methods that are trained
from scratch. To the best of our knowledge, this is the
first work to benchmark this specific set of approaches on
the Spacenet 2 Building Detection dataset with a consistent
experimental setup.

The rest of the paper is organized as follows. We start with a
brief introduction of the related work in semantic segmentation
and building localization in Section II. The methods and
SpaceNet dataset are presented in Section III. In Section
IV, the implementation details and experiment results with
a detailed discussion are introduced. At the end of this paper,
the conclusions and future work are given.

II. RELATED WORK

A. Semantic Segmentation

With the advent of deep learning, recently proposed methods
for semantic segmentation have shown impressive perfor-
mance on a variety of benchmark datasets [4]. As a seminal
work in this line of research, Fully Convolutional Networks
(FCN) build on the success of Deep Convolutional Neu-
ral Networks (DCNN) for image classification by efficiently
making dense predictions for per-pixel tasks by avoiding
the use of fully-connected layers [5]. Feature maps from
intermediate layers of a backbone network are up-sampled to
the dimensions of the desired output and combined to generate
the predicted semantic map. SegNet [6] extended FCN by
using a symmetric encoder-decoder architecture. The decoder
progressively up-samples and refines the low dimensional fea-
tures generated by the encoder to yield the predicted semantic
map. U-Net [3] proposes a similar symmetric structure but also
includes skip connections between encoder and decoder layers
at the same level of spatial resolution hierarchy. U-Net++ [7]
extends U-Net to include skip connections between encoder
and decoder layers at multiple levels of the spatial resolution
hierarchy.

In a separate line of work, the original DeepLab [8] lever-
ages dilated convolutions to avoid having to excessively down-
sample the size of features maps generated by the encoder. The
output features of the encoder are up-sampled with bi-linear in-
terpolation and fed to a Fully Connected Conditional Random
Field (CRF) to iteratively refine the predicted semantic maps.
In the second iteration [9], the DeepLab architecture is opti-
mized to handle objects at multiple scales with the inclusion
of Atrous Spatial Pyramid Pooling (ASPP). DeepLabv3 [10]
introduced a novel encoder-decoder with dilated, depth-wise
separable convolutions to capture sharper object boundaries
without the use of a CRF for post-processing. Most Recently,
Chen et al [11] substituted the Resnet [12] backbone with an
Aligned Inception [13] based architecture and introduced a
more elaborate up-sampling scheme in the decoder.

B. Semantic Segmentation on Building Extraction

Inspired by the impressive performance of semantic seg-
mentation models, significant effort has been made to transfer
the success of deep learning based semantic segmentation
methods to building footprint extraction [14]. As a seminal
approach to semantic segmentation, FCN have been explored
for building footprint localization. Sang et al. [15] investigated
fully residual convolutional neural networks for aerial image
segmentation, utilizing FCN with a Resnet backbone [12] and
additional upsampling skip connections.

Furthermore, U-Net based semantic segmentation models
have been extensively studied [16], [17], [18], [19] for building
footprint extraction. A multi-constraint fully convolutional
network (MC-FCN) model using U-Net as the basic structure
of a semantic segmentation model was proposed to perform
end-to-end building segmentation in Wu et al [16]. A U-Net-
based semantic segmentation method was also explored for
the extraction of building footprints from high-resolution mul-
tispectral satellite images in Li et al [17]. A fusion solution for
an ensemble of U-net models was proposed to extract building
contours from the segmentation of aerial images [18]. In order
to capture objects of different scales in the deep features, Li et
al. [19] proposed a novel aerial image segmentation method
adapting U-Net [3] based on convolutional neural networks
and inserted a group of cascaded dilated convolutions at the
bottom of U-Net which had different dilation rates.

Similarly, DeepLab based semantic segmentation models
have attracted great attention in recent research due to their
exceptional performance. In [20], a semantic segmentation
network modified from DeepLabV3 was applied to urban-scale
building footprint extraction using RGB satellite imagery. An
improved algorithm based on DeepLabv3+ was developed for
semantic segmentation of remote sensing images in [21].

III. APPROACH
A. Method

The four approaches to semantic segmentation that were
explored include: U-Net [3], U-Net++ [7], Fully Convolutional
Networks (FCN) [5] and DeepLabv3 [10]. For both FCN and
DeepLabv3, two variants of the architecture with different
backbones (Resnet-50 and Resnet-100) are included. Thus, in
total, six approaches are benchmarked on the task of building
footprint extraction in aerial images. The following section
offers a brief description of each high level approach.

U-Net: U-Net is an encoder-decoder architecture for seman-
tic segmentation. The encoder consists of a contracting path to
capture context and the decoder consists of an expanding path
that enables precise localization [3]. Skip connections copy
feature maps from the encoder to the decoder layers at the
same level of the spatial resolution hierarchy. This enables the
flow of high level information that may be lost in the low
dimensional output of the encoder [3].

U-Net++: U-Net++ is an encoder-decoder architecture for
semantic segmentation that builds on U-Net by linking the
encoder and decoder through a series of nested, dense skip
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Fig. 1. A visualization of the model architectures for UNet [3], UNet++ [7], FCN [5] and DeepLabv3 [10].

pathways. The re-designed skip pathways aim to reduce the
semantic gap between the feature maps of the encoder and
decoder sub-networks [7]. When compared with the U-Net ar-
chitecture, U-Net++ not only has direct or skipped connections
between down-sampling layers and up-sampling layers but
also convolutional connections, which can pass more features
into the up-sampling layers.

FCN: FCN maps arbitrary-sized input images to predicted
semantic maps using solely convolutional layers [S]. In-
network up-sampling layers are leveraged to make pixel-wise
predictions by increasing the spatial resolution of the features
generated by the backbone of the network to the height and
width of the output. Once up-sampled, semantic information
from low resolution feature maps is combined with appearance
information from high resolution feature maps to produce
precise segmentations. Both an FCN with a Resnet-50 back-
bone (FCN-50) and a Resnet-101 backbone (FCN-101) are
benchmarked in the experiments section. The backbones are
pretrained using the COCO train2017 semantic segmentation
dataset [22] and fine-tuned for the building footprint extraction
task.

DeepLabv3: DeepLabv3 is an encoder-decoder architecture
for semantic segmentation that leverages dilated convolutional
filters to increase the receptive field of the network and prevent
excessive down-sampling [10]. A Spatial Pyramid Pooling
module is used to capture context at multiple resolutions which
is helpful in localizing objects of different sizes. Standard con-
volutional layers are factored into depth-wise separable convo-
lutions followed by point-wise convolutions. This dramatically

reduces the floating point operations per convolutional layer
while maintaining network expressiveness. Both variations of
DeepLabv3, with a Resnet-50 backbone (DLV3-50), and a
Resnet-101 backbone (DLV3-101) are benchmarked in the
experiments section. The backbones are pre-trained using the
COCO train2017 semantic segmentation dataset [22] and fine-
tuned for the building footprint extraction task.

B. Dataset

In order to benchmark the aforementioned approaches to
building footprint extraction in satellite images, the SpaceNet
Building Detection V2 dataset [1] is used. This dataset con-
tains high resolution satellite imagery and corresponding labels
that specify the location of building footprints. The dataset
includes 302,701 Building Labels from across 10,593 multi-
spectral satellite images of Las Vegas, Paris, Shanghai and
Khartoum. The labels are binary and indicate whether each
pixel is building or background, as can be seen in Figure 2.

IV. EXPERIMENT

A. Implementation Details

The experiments were implemented in Python using the
PyTorch Framework and conducted on 4 NVIDIA Telsa P100
GPU devices. The architecture for each approach is consistent
with that specified in the original papers [3], [5], [7], [10].
Each method is trained for 30 Epochs using the ADAM opti-
mizer [23] with a learning rate of 2e-4. Random seeds are used
to strive for consistency in evaluation and reproducibility of
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Fig. 2. An example of images (left) and labels (right) in the SpaceNet Building
Detection V2. [1]

the experiments. Additional details about the implementation
can be found in III

B. Experimental Setup

The dataset is divided into training (80%), validating (10%)
and testing (10%) sets. Images are resized from 650x650 to
384x384 using bi-cubic interpolation and normalized using the
mean and standard deviation of the Imagenet dataset [24].
The proposed semantic segmentation models are trained on
the training set, while the validating set is used to determine a
stopping criteria. Lastly, the trained model is evaluated on the
testing set. Intersection over Union (IoU) is the metric used
to evaluate the model performance and measures the overlap
between the labels of the prediction and ground truth. IoU
ranges from O to 1 where 1 denotes perfect and complete
overlap.

C. Results

The IoU of each method on the test set is reported in Figure
I. DLV3-101 achieves the best performance with an IoU of
0.7734 followed closely by DLV3-50, FCN-50 and FCN-101.
U-Net and U-Net++ perform comparatively worse with an loU
of 0.5644 and 0.6554, respectively. The performance gap can
be attributed to the fact that FCN-50, FCN-101, DLV3-50 and
DLV3-100 benefit from pre-training whereas U-Net and U-
Net++ do not. This performance gap is also apparent in Figure
4 which shows the train and validation loss of each method
across epochs. Methods that leverage pretraining are able to
achieve better performance on both the train and validation
set from the onset of training. The validation loss begins to
plateau after only a few epochs which suggest that training is
finished and should be early stopped to prevent over-fitting.
Alternatively, U-Net and U-Net++ have train and validation
losses that consistently decrease over the course of training.
This highlights the fact that models that leverage pretraining
converge to the optimal set of parameters faster, in addition
to offering better performance.

Qualitative results are available in Figure 3, which shows
an example input image, ground truth label and predicted
semantic map for each method. The prediction quality of the
methods parallels the quantitative results but performance is
impressive across the board. The methods are able to generate

precise semantic maps in scenes densely populated with build-
ing footprints. Additionally, predicted semantic maps in scenes
that are sparsely populated with building footprints are robust
to false positives, even in cases where roadways, parking lots
or other structures are present.

A preliminary analysis of the importance of model architec-
ture conditioned on pretraining yields interesting results. The
performance among methods that leverage pretraining is sim-
ilar, even across different architectures and backbones. Con-
versely, when considering the performance among methods
that do not leverage pretraining, U-Net++ vastly outperforms
U-Net. Although this warrants further experiments to validate,
one hypothesis is that model architecture becomes less relevant
as the amount of pretraining increases.

Model ToU
U-Net 0.5644
U-Net++ 0.6554
FCN-50 0.7455
FCN-101 0.7472
DLV3-50 0.7612
DLV3-101 | 0.7734

TABLE 1

ToU SCORE ON TEST SET FOR EACH APPROACH

D. Future Work

There is a considerable amount of future work that can
be done to extend this research. One such area is exploring
optimal pre-processing, data augmentation and post-processing
schemes for semantic segmentation models within the context
of building feature extraction in satellite imagery. Additionally,
a wider set of approaches and datasets can be included in the
experiments to yield more complete and robust results.

CONCLUSION

In this study, we trained and evaluated several state-of-the-
art semantic segmentation models using the SpaceNet dataset,
including U-Net, UNet++, FCN and DeepLabv3. Our results
showed that DeepLabv3 with a Resnet-101 backbone is the
most accurate approach to building footprint extraction among
the models we explored. Models that leverage pretraining
(i.e. FCN-50, FCN-101, DLV3-50 and DLV3-101) achieve
higher accuracy and require minimal training compared to
models without pretraining (i.e. U-Net and UNet++). This
study implies that it is suitable to apply transfer learning for
the task of building footprint extraction using satellite imagery.
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